1. Pawlowski K. editors. Anatomy and Physiology of the Cochlea. In: Ototoxicity. In: Roland P, Rutka J. London: BC Decker Inc;2004. p.1–19.
2. Harel N, Kakigi A, Hirakawa H, Mount RJ, Harrison RV. The effects of anesthesia on otoacoustic emissions. Hear Res 1997;110:25–33.
3. Zheng Y, Ohyama K, Hozawa K, Wada H, Takasaka T. Effect of anesthetic agents and middle ear pressure application on distortion product otoacoustic emissions in the gerbil. Hear Res 1997;112:167–74.
4. Albera R, Ferrero V, Canale A, De Siena L, Pallavicino F, Poli L. Cochlear blood flow modifications induced by anaesthetic drugs in middle ear surgery: comparison between sevoflurane and propofol. Acta Otolaryngol 2003;123:812–6.
5. Buyukkocak U, Kilic R, Arikan OK, Sert O, Datli F. Prospective randomized trial to determine whether inhalational anesthetics have any effects on hearing function. J Otolaryngol Head Neck Surg 2009;38:495–500.
6. Guven S, Tas A, Adali MK, Yagiz R, Alagol A, Uzun C, et al. Influence of anaesthetic agents on transient evoked otoacoustic emissions and stapedius reflex thresholds. J Laryngol Otol 2006;120:10–5.
7. Khan Z, Ferguson C, Jones R. Alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia 1999;54:146–65.
8. Flacke JW. Alpha 2-adrenergic agonists in cardiovascular anesthesia. J Cardiothorac Vasc Anesth 1992;6:344–59.
9. Memiş D, Turan A, Karamanlıoğlu B, Şeker Ş, Pamukçu Z. Dexmedetomidine reduces rocuronium dose requirement in sevoflurane anaesthesia. Curr Anaesth Crit Care 2008;19:169–74.
10. Maier C, Steinberg GK, Sun GH, Zhi GT, Maze M. Neuroprotection by the alpha 2-adrenoreceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology 1993;79:306–12.
11. Zornow MH, Fleischer JE, Scheller MS, Nakakimura K, Drummond JC. Dexmedetomidine, an α2-adrenergic agonist, decreases cerebral blood flow in the isoflurane-anesthetized dog. Anesth Analg 1990;70:624–30.
12. Hauser R, Harris F, Probst R, Frei F. Influence of general anesthesia on transiently evoked otoacoustic emissions in humans. Ann Otol Rhinol Laryngol 1992;101:994–9.
13. Zhang M, Abbas PJ. Effects of middle ear pressure on otoacoustic emission measures. J Acoust Soc Am 1997;102(2 Pt 1):1032–7.
14. Sun XM, Shaver MD. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans. Ear Hear 2009;30:191–202.
16. Nader ND, Simpson G, Reedy RL. Middle ear pressure changes after nitrous oxide anesthesia and its effect on postoperative nausea and vomiting. Laryngoscope 2004;114:883–6.
17. Ozturk O, Demiraran Y, Ilce Z, Kocaman B, Guclu E, Karaman E. Effects of sevoflurane and TIVA with propofol on middle ear pressure. Int J Pediatr Otorhinolaryngol 2006;70:1231–4.
18. Hansen S. Postural hypotension-cochleo-vestibular hypoxia-deafness. Acta Otolaryngol Suppl 1988;449:165–9.
19. Pirodda A, Ferri GG, Modugno GC, Gaddi A. Hypotension and sensorineural hearing loss: a possible correlation. Acta Otolaryngol 1999;119:758–62.
20. Telischi FF, Stagner B, Widick MP, Balkany TJ, Lonsbury-Martin BL. Distortion-product otoacoustic emission monitoring of cochlear blood flow. Laryngoscope 1998;108:837–42.
21. Mom T, Telischi FF, Martin GK, Lonsbury-Martin BL. Measuring the cochlear blood flow and distortion-product otoacoustic emissions during reversible cochlear ischemia: a rabbit model. Hear Res 1999;133:40–52.
22. Brown JN, Nuttall AL. Autoregulation of cochlear blood flow in guinea pigs. Am J Physiol 1994;266(2 Pt 2):H458–67.
23. Dagal A, Lam AM. Cerebral autoregulation and anesthesia. Curr Opin Anaesthesiol 2009;22:547–52.
24. Ogawa Y, Iwasaki K, Aoki K, Kojima W, Kato J, Ogawa S. Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method. Anesthesiology 2008;109:642–50.
25. Kawano T, Yamazaki F, Chi H, Kawahito S, Eguchi S. Dexmedetomidine directly inhibits vascular ATP-sensitive potassium channels. Life Sci 2012;90:272–7.
26. Talke P, Lobo E, Brown R. Systemically administered alpha2-agonist-induced peripheral vasoconstriction in humans. Anesthesiology 2003;99:65–70.
27. Borin A, Cruz OL. Study of distortion-product otoacoustic emissions during hypothermia in humans. Braz J Otorhinolaryngol 2008;74:401–9.
28. Ferber-Viart C, Savourey G, Garcia C, Duclaux R, Bittel J, Collet J. Influence of hyperthermia on cochlear micromechanical properties in humans. Hear Res 1995;91:202–7.
29. Seifert E, Brand K, Van de Flierdt K, Hahn M, Riebandt M, Lamprecht-Dinnesen A. The influence of hypothermia on outer hair cells of the cochlea and its efferents. Br J Audiol 2001;35:87–98.